
GeckoView Documentation
Release 66

Mozilla

Jan 09, 2019

Contents:

1 GeckoView Contributor Quick Start Guide 1

2 Submitting a patch to Firefox using Git. 5

3 Firefox Developer Git Quick Start Guide 9

4 Indices and tables 11

i

ii

CHAPTER 1

GeckoView Contributor Quick Start Guide

This is a guide for developers who want to contribute to the GeckoView project. If you want to get started using
GeckoView in your app then you should refer to the [wiki](https://wiki.mozilla.org/Mobile/GeckoView#Get_Started).

You may also be interested in how to get up and running with [Firefox For Android(https://developer.mozilla.org/
en-US/docs/Mozilla/Developer_guide/Build_Instructions/Simple_Firefox_for_Android_build).

The GeckoView codebase is part of the main Firefox tree and can be found in mozilla-central. You will need to get
set up as a contributor to Firefox in order to contribute to GeckoView. To get set up with mozilla-central, follow the
[Quick Start Guide for Git Users](MozCentralQuickStart.md), or the [Contributing to the Mozilla code base](https:
//developer.mozilla.org/docs/Mozilla/Developer_guide/Introduction) guide on [MDN](https://developer.mozilla.org/)
for Mercurial users.

Once you have a copy of mozilla-central, you will need to build GeckoView.

Bootstrap Gecko Bootstrap configures everything for GeckoView and Fennec development.

• Ensure you have mozilla-central checked out. If this is the first time you are doing this, it may take some time.

git checkout central/default

If you are on a mac, you will need to have the Xcode build tools installed. You can do this by either [installing
Xcode](https://developer.apple.com/xcode/) or installing only the tools from the command line by running xcode-
select –install and following the on screen instructions. Use the ‘ –no-interactive‘ argument to automatically accept
any license agreements.

./mach bootstrap [--no-interactive]

• Choose option 4. Firefox for Android for GeckoView development. This will give you a version of Gecko
configured for Android that has not bundled the native code into embedded libraries so you can amend the code.

• Say Y to all configuration options

• Once mach bootstrap is complete it will tell you to copy and paste some configuration into your mozconfig file.
The mozconfig file can be found in the root of your gecko repo - or create a file called mozconfig if it does not
exist. Check that the correct value is associated with the –target argument as this may not correctly match your
setup. Your mozconfig should read something like this:

1

https://wiki.mozilla.org/Mobile/GeckoView#Get_Started
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Simple_Firefox_for_Android_build
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Simple_Firefox_for_Android_build
https://developer.mozilla.org/docs/Mozilla/Developer_guide/Introduction
https://developer.mozilla.org/docs/Mozilla/Developer_guide/Introduction
https://developer.mozilla.org/
https://developer.apple.com/xcode/

GeckoView Documentation, Release 66

mk_add_options MOZ_OBJDIR=../objdir-android-opt

Build Firefox for Android:
ac_add_options --enable-application=mobile/android
ac_add_options --target=<your target architecture>

With the following java and javac:
ac_add_options --with-java-bin-path="/Library/Java/Home/bin"

With the following Android SDK and NDK:
ac_add_options --with-android-sdk="$HOME/.mozbuild/<your-sdk>"
ac_add_options --with-android-ndk="$HOME/.mozbuild/android-ndk-r17b"

• Configure your build.

./mach configure

Build from the command line

In order to pick up the configuration changes we just made we need to build from the command line and package the
app.

./mach build

./mach package

• Install [Android Studio](https://developer.android.com/studio/install).

• Disable Instant Run. This is because Fennec and the Geckoview Example app cannot deploy with Instant Run
on.

– Select Android Studio > Preferences from the menu bar

– Navigate to Build, Execution, Deployment > Instant Run.

– Uncheck the box that reads Enable Instant Run to hot swap code/resource changes on deploy.

![alt text](assets/DisableInstantRun.png “Disable Instant Run”)

• Choose File->Open from the toolbar

• Navigate to <path to gecko>/mobile/android/geckoview and click “Open”

• Click yes if it asks if you want to use the gradle wrapper.

• Wait for the project to index and gradle to sync. Once synced, the workspace will reconfigure to display the
different projects.

– annotations contains custom annotations used inside GeckoView and Fennec.

– app is Fennec - Firefox for Android. Here is where you will find code specific to that app.

– geckoview is the GeckoView project. Here is all the Java files related to GeckoView

– geckoview_example is an example browser built using GeckoView.

– omnijar contains the parts of Gecko and GeckoView that are not written in Java or Kotlin

– thirdparty contains third party code that Fennec and GeckoView use.

![alt text](assets/GeckoViewStructure.png “GeckoView Structure”)

Now you’re set up and ready to go.

2 Chapter 1. GeckoView Contributor Quick Start Guide

https://developer.android.com/studio/install

GeckoView Documentation, Release 66

One you have got GeckoView building and running, you will want to start contributing. There is a general guide to
[Performing a Bug Fix for Git Developers](ContributingToMC.md) for you to follow. To contribute to GeckoView
specifically, you will need the following additional information.

It is advisable to run your tests before submitting your patch. You can do this using Mozilla’s try server. To submit a
GeckoView patch to try before submitting it for review, type:

./mach try fuzzy -q "android"

This will run all of the Android test suite. If your patch passes on try you can be (fairly) confident that it will land
successfully after review.

When submitting a patch to Phabricator, if you know who you want to review your patch, put their Phabricator handle
against the reviewers field.

If you don’t know who to tag for a review in the Phabricator submission message, leave the field blank and, after
submission, follow the link to the patch in Phabricator and scroll to the bottom of the screen until you see the comment
box.

• Select the Add Action drop down and pick the Change Reviewers option.

• In the presented box, add geckoview-reviewers. Selecting this group as the reviewer will notify all the members
of the GeckoView team there is a patch to review.

• Click Submit to submit the reviewer change request.

If you want to include a development version of GeckoView as a dependency inside another app, you must link to a
local copy. There are two ways of doing this, publishing GeckoView to a local Maven repository (recommended), or
linking to a local archive/

Publish GeckoView to your local maven by running

./gradlew geckoview:publishWithGeckoBinariesDebugPublicationToMavenLocal

• The binary will have been published to a repo found in ~/.m2. Run the following command to figure out the
name of the artifcat:

tree ~/.m2/repository/org/mozilla/geckoview

• Make a note of the name of your artifact. Update your gradle file to point to the dependency and link to your
local repository.

dependencies {
// ...
armImplementation "geckoview-nightly-armeabi-v7a-65.0.20181128102620"
// ...

}

// ...

repositories {
//...
mavenLocal()
//..

}

./mach android archive-geckoview

This should create a file named geckoview-*.aar in your build output folder (MOZ_OBJDIR):

3

GeckoView Documentation, Release 66

ls <your-output-directory>/gradle/build/mobile/android/geckoview/outputs/aar
geckoview-official-withGeckoBinaries-noMinApi-release.aar

Then all you need to do is point to the AAR in your gradle file.

repositories {
// ...

flatDir(
name: 'localBuild',
dirs: '<absolute path to AAR>'

)
}
// ...
dependencies {

// ...

// armImplementation "org.mozilla:geckoview-nightly-armeabi-v7a:60.0a1"
armImplementation (

name: 'geckoview-official-withGeckoBinaries-noMinApi-release',
ext: 'aar'

)
x86Implementation "org.mozilla:geckoview-nightly-x86:60.0a1"

// ...
}

4 Chapter 1. GeckoView Contributor Quick Start Guide

CHAPTER 2

Submitting a patch to Firefox using Git.

This guide will take you through submitting and updating a patch to mozilla-central as a git user. You need to already
be [set up to use git to contribute to mozilla-central](MozCentralQuickStart.md).

All of the open bugs for issues in Firefox can be found in [Bugzilla](https://bugzilla.mozilla.org). If you know the
component that you wish to contribute to you can use Bugzilla to search for issues in that project. If you are unsure
which component you are interested in, you can search the [Good First Bugs](https://bugzilla.mozilla.org/buglist.cgi?
quicksearch=good-first-bug) list to find something you want to work on.

• Once you have your bug, assign it to yourself in Bugzilla.

• Update your local copy of the firefox codebase to match the current version on the servers to ensure you are
working with the most up to date code.

`bash git remote update ` * Create a new feature branch tracking either Central or Inbound.

` git checkout -b bugxxxxxxx [inbound|central]/default ` * Work on your bug, checking
into git according to your preferred workflow. _Try to ensure that each individual commit compiles and passes all
of the tests for your component. This will make it easier to land if you use moz-phab to submit (details later in this
post)._

You must have Mozilla commit access in order to submit your fix directly to the Firefox repository. There are three
levels of commit access that give increasing levels of access to the repositories.

Level 1: Try/User access. You will need this level of access commit to the try server. Level 2: General access. This
will give you full commit access to any mercurial or SVN repository not requiring level 3 access. Level 3: Core access.
You will need this level to commit to any of the core repositories (Firefox/Thunderbird/Fennec).

If you wish to apply for commit access, please follow the guide found in the [Mozilla Commit Access Policy](https:
//www.mozilla.org/en-US/about/governance/policies/commit/access-policy/).

If you do not have access and still want to submit your fix, you can create a patch and attach it directly to the Bugzilla
ticket. We do not recommend this method, though, and strongly encourage contributors to apply for commit access.

Attaching a patch in Bugzilla

• Create a patch from your commits.

5

https://bugzilla.mozilla.org
https://bugzilla.mozilla.org/buglist.cgi?quicksearch=good-first-bug
https://bugzilla.mozilla.org/buglist.cgi?quicksearch=good-first-bug
https://www.mozilla.org/en-US/about/governance/policies/commit/access-policy/
https://www.mozilla.org/en-US/about/governance/policies/commit/access-policy/

GeckoView Documentation, Release 66

`bash git format-patch -[number of commits to include] ` This will create a patch for each
commit. If you want to roll your commits into a single patch, you can use the following command.

`bash git format-patch -[number of commits] --stdout > bugxxxxxxx-ddmmyyyy.
patch ` * Visit your bug in Bugzilla

• Click on the Attach File link

• Drag or your patch file into the File box.

• Add a brief description of the patch (this is especially useful if you are submitting multiple patches)

• Check the patch checkbox to indicate that this is a patch.

• Select the ? from the review checkbox.

• Add the bugzilla handle for the person you want to review in the associated text box that will appear. If you do
not know who should review the patch, select an option from the Suggested Reviewers drop down.

• Add any comments that you want to make about the patch in the Comments box. This is where I would add the
kind of message I would add to the description of a PR in Github.

• Submit the form.

If you only have Level 1 access, you will still need to attach your patch to the Bugzilla bug, but you can test it on the
try server first.

• Create a commit using the [try syntax](https://wiki.mozilla.org/ReleaseEngineering/TryChooser)

• Push to the try server

`bash git push try `

To commit anything to the repository, you will need to set up Arcanist and Phabricator. If you are using git-cinnabar
then you will need to use git enabled versions of these tools.

• Ensure PHP is installed

• [Install Arcanist](https://secure.phabricator.com/book/phabricator/article/arcanist_quick_start/)

• In a browser, visit Mozilla’s Phabricator instance at https://phabricator.services.mozilla.com/.

• Click “Log In” at the top of the page

![alt text](assets/LogInPhab.png “Log in to Phabricator”)

• Click the “Log In or Register” button on the next page. This will take you to Bugzilla to log in or register a new
account.

![alt text](assets/LogInOrRegister.png “Log in or register a Phabiricator account”)

• Sign in with your Bugzilla credentials, or create a new account.

![alt text](assets/LogInBugzilla.png “Log in with Bugzilla”)

• You will be redirected back to Phabricator, where you will have to create a new Phabricator account. <Screenshot
Needed>

• Fill in/amend any fields on the form and click “Register Account”. <Screenshot Needed>

• You now have a Phabricator account and can submit and review patches.

• Ensure you are on the branch where you have commits that you want to submit.

`bash git checkout "your-branch-with-commits" ` * Create a differential patch containing your
commits

`bash arc diff `

6 Chapter 2. Submitting a patch to Firefox using Git.

https://wiki.mozilla.org/ReleaseEngineering/TryChooser
https://secure.phabricator.com/book/phabricator/article/arcanist_quick_start/
https://phabricator.services.mozilla.com/

GeckoView Documentation, Release 66

• If you have any uncommited files, Arcanist will ask if you want to commit them.

• If you have any files in the path not added to git Arcanist will ask if you want to ignore them.

• After formatting your patch, Arcanist will open a nano/emacs file for you to enter the commit details. If you
have many individual git commits in your arcanist diff then the first line of the first commit message will become
the patch title, and the rest of the commit, plus the messages for the other commits in the patch will form the
summary.

• Ensure you have entered the bug number against the Bug # field.

• If you know who you want to review your patch, put their Phabricator handle against the reviewers field. If in
doubt, look to see who filed, or is listed as a mentor on, the bug you are addressing and choose them.

• Close the editor (Ctrl X) to save the patch.

• Arcanist now formats your patch and submits it to Phabricator. It will display the Phabricator link in the output.

• Copy that link and paste it into a browser window to view your patch.

You may have noticed when using Arcanist that it wraps all of your carefully curated Github commits into a single
patch. If you have made many commits that are self contained and pass all the tests then you may wish to submit a
patch for each commit. This will make it easier to review. The way to do this is via moz-phab. moz-phab required
Arcanist so you do have to have that installed first.

N.B. If each individual patch does not compile and pass tests you will not be able to land each patch individually. In
this case, please use Arcanist.

• Download the latest version of [moz-phab](https://github.com/mozilla-conduit/review/releases/tags) from the
repository.

• Add it to your path

`bash export PATH="$PATH:/somewhere/moz-phab/bin/" echo PATH="$PATH:/
somewhere/moz-phab/bin/" >> ~/.bash_profile `

• Ensure you are on the branch where you have commits that you want to submit.

`bash git checkout your-branch ` * Check the revision numbers for the commits you want to submit

`bash git log ` * Run moz-phab. Specifying a start commit will submit all commits from that commit. Spec-
ifying an end commit will submit all commits up to that commit. If no positional arguments are provided, the range
is determined to be starting with the first non-public, non-obsolete changeset (for Mercurial) and ending with the
currently checked-out changeset.

`bash moz-phab submit [start_rev] [end_rev] ` * You will recieve a Phabricator link for each
commit in the set.

• Often you will need to make amendments to a patch after it has been submitted to address review comments. To
do this, add your commits to the base branch of your fix as normal.

To submit the update using Arcanist, run arc diff –update <PhabricatorDifferentialNumber>.

For moz-phab run in the same way as the initial submission with the same arguments, that is, specifying the full
original range of commits. Note that, while inserting and amending commits should work fine, reordering commits is
not yet supported, and deleting commits will leave the associated revisions open, which should be abandoned manually

7

https://github.com/mozilla-conduit/review/releases/tags

GeckoView Documentation, Release 66

8 Chapter 2. Submitting a patch to Firefox using Git.

CHAPTER 3

Firefox Developer Git Quick Start Guide

Getting setup to as a first time Mozilla contributor is hard. There are plenty of guides out there to help you get
started as a contributor, but many of the new contributor guides out of date often more current ones are aimed at
more experienced contributors. If you want to review these guides, you can find several linked to from [Contributing
to the Mozilla code base](https://developer.mozilla.org/docs/Mozilla/Developer_guide/Introduction) on [MDN](https:
//developer.mozilla.org/).

This guide will take you through setting up as a contributor to mozilla-central, the Firefox main repository, as a git
user.

The first thing you will need is to install Mercurial as this is the VCS that mozilla-central uses.

brew install mercurial

sudo port install mercurial

sudo apt-get install mercurial

Alternatively you can install [Mercurial directly](https://www.mercurial-scm.org/wiki/Download).

Check that you have successfully installed Mercurial by running:

`bash hg --version `

If you are an experienced git user and are unfamiliar with Mercurial, you may want to install git-cinnabar. Cinnabar
is a git remote helper that allows you to interact with Mercurial repos using git semantics.

There is a Homebrew install option for git-cinnabar, but this did not work for me, nor did the installer option. Using
these tools, when I tried to clone the Mercurial repo it hung and did not complete. I had to do a manual install before
I could use git-cinnabar successfully to download a Mercurial repo. If you would like to try either of these option,
however, here they are:

`bash brew install git-cinnabar `

`bash git cinnabar download `

`bash git clone https://github.com/glandium/git-cinnabar.git && cd
git-cinnabar make export PATH="$PATH:/somewhere/git-cinnabar/" echo

9

https://developer.mozilla.org/docs/Mozilla/Developer_guide/Introduction
https://developer.mozilla.org/
https://developer.mozilla.org/
https://www.mercurial-scm.org/wiki/Download

GeckoView Documentation, Release 66

PATH="$PATH:/somewhere/git-cinnabar/" >> ~/.bash_profile export PATH="$PATH:/
somewhere/git-cinnabar/git-core/bin-wrappers" echo PATH="$PATH:/somewhere/
git-cinnabar/git-core/bin-wrappers" >> ~/.bash_profile `

git-cinnabar’s creator, [glandium](https://glandium.org/), has written a number of posts about setting up for Firefox
Development with git. This [post](https://glandium.org/blog/?page_id=3438) is the one that has formed the basis for
this walkthrough.

In synopsis:

• initialize an empty git repository

`bash git init gecko && cd gecko `

• Configure git:

`bash git config fetch.prune true git config push.default upstream `

• Add remotes for your repositories. There are several to choose from, central, inbound, beta, release etc. but in
reality, if you plan on using Phabricator, which is Firefox’s preferred patch submission system, you only need
to set up central. It might be advisable to have access to inbound however, if you want to work on a version of
Firefox that is queued for release. This guide will be focussed on Phabricator.

`bash git remote add central hg::https://hg.mozilla.org/mozilla-central
-t branches/default/tip git remote add inbound hg::https://hg.mozilla.org/
integration/mozilla-inbound -t branches/default/tip git remote set-url --push
central hg::ssh://hg.mozilla.org/mozilla-central git remote set-url --push
inbound hg::ssh://hg.mozilla.org/integration/mozilla-inbound `

• Expose the branch tip to get quick access with some easy names.

`bash git config remote.central.fetch +refs/heads/branches/default/tip:refs/
remotes/central/default git config remote.inbound.fetch +refs/heads/branches/
default/tip:refs/remotes/inbound/default `

• Setup a remote for the try server. The try server is an easy way to test a patch without actually checking the
patch into the core repository. Your code will go through the same tests as a mozilla-central push, and you’ll be
able to download builds if you wish.

`bash git remote add try hg::https://hg.mozilla.org/try git config remote.try.
skipDefaultUpdate true git remote set-url --push try hg::ssh://hg.mozilla.org/
try git config remote.try.push +HEAD:refs/heads/branches/default/tip `

• Now update all the remotes. This performs a git fetch on all the remotes. Mozilla Central is a _large_ repository.
Be prepared for this to take a very long time.

`bash git remote update `

All that’s left to do now is pick a bug to fix and [submit a patch](ContributingToMC.md).

10 Chapter 3. Firefox Developer Git Quick Start Guide

https://glandium.org/
https://glandium.org/blog/?page_id=3438

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

	GeckoView Contributor Quick Start Guide
	Submitting a patch to Firefox using Git.
	Firefox Developer Git Quick Start Guide
	Indices and tables

